
ISSES 2017-2020
Novi Sad, Serbia

ISSES – Information Security Services
Education in Serbia

Supported by the Erasmus+ Capacity Building in the
field of Higher Education (CBHE) grant
N° 586474-EPP-1-2017-1-RS-EPPKA2-CBHE-JP

Serbian Cybersecurity Challenge 2020

REVERSE ENGINEERING

Vision

 From Zero to Hero in
reverse engineering

 Malware analysis
• Static

• Dynamic

 Reversing custom
programs

 Portable Executable (PE)

 Executable and Linkable
Format (ELF)

2

Reverse Engineering

 Starting point: specification

 Goal: code that confirms with the sepcification

Reverse Engineering of Managed Languages3

Reverse Engineering

 Starting point: application
 Goal: extract knowledge or design information

 Bug finding, interfacing, intelligence gathering about
competitors

Reverse Engineering of Managed Languages4

PORTABLE EXECUTABLE (PE)

Windows OS: Portable Executable (PE)

 The Portable
Executable (PE)
format is a file format
for executables, object
code and DLLs used in
the 32-bit and 64-bit
Windows OS.

 “Portable” refers to the
format’s versatility in
numerous
environments of OS
architecture.

The PE file format

.reloc section (memory translations)

.rsrc section (strings, images, …)

.idata section (imported libraries)

.text section (program code)

Section headers

Optional header

PE header

DOS header

PE structure – 1

The PE file format

.reloc section (memory translations)

.rsrc section (strings, images, …)

.idata section (imported libraries)

.text section (program code)

Section headers

Optional header

PE header

DOS header

 DOS header: Starts with ‘ZB’, i.e. Mark
Zbikowsky, one of the original DOS
architects. Last 4 bytes point to the PE
header.

 PE header: Contains general attributes:
program defined for 32 or 64-bit,
compilation timestamp (when was the PE
file built), etc.

 Optional header: Defines the program’s
entry point (1st instruction), data size
loaded by Windows, program target (GUI
vs cmd), etc.

 Section headers: Describe the sections
contained in the PE file. Permissions
granted to sections.

• NOTE: A section is a chunk of data or
instructions loaded by Windows.

PE structure – 2

 .text section: The x86 code.
Each PE file has at least one
such section.

 .idata section: Aka
“imports”, contains the Import
Address Table, list of loaded
dynamically linked libraries
(DLLs) and their functions.

 Data sections: .rsrc, .data &
.rdata store cursor images,
button skins, audio and other
necessary elements.

 .reloc section: allows the
code to be moved around in
memory. Defines memory
address translations for
Windows.

The PE file format

.reloc section (memory translations)

.rsrc section (strings, images, …)

.idata section (imported libraries)

.text section (program code)

Section headers

Optional header

PE header

DOS header

Portable
Executable
CC BY 4.0,
https://commons.wikimedia.org/w/index.
php?curid=51026079

EXECUTABLE AND LINKABLE

FORMAT (ELF)

ELF file structure – 1

 ELF header: 32- or 64-bit
addresses.

 Program header table:
Tells the (*nix) system how
to create a process image.
Describes zero or more
memory segments.

 Section header table:
Describes zero or more
sections.

 Data referred to by entries
in the program header
table or section header
table

 Trivia: also used by
Android, Sony PlayStation
2-4.

ELF file structure – 3

 .text: Executable
instructions of the
program.

 .data: Initialized data.

 .rodata: Read-only data.

 .bss: Un-initialized data.
The system inits these
with zeros.

 .rel.text, rel.data,
rel.rodata: relocation
information for the
corresponding sections.

ELF file structure – 3

 .symtab: Symbol table.

 .strtab: Section for
storing strings.

 .init: Process
initialization code.

 .fini: Process
termination code.

 .debug: Symbolic debug
info.

 .line: Program source
and machine code
linking in debug.

 .comment: Extra info.

Executable and Linkable Format (ELF)

Library
Files

Object
Files

Assembly
Source

Files

C/C++ Source
and Header

Files

Overview of source translation

Makefile
C/C++ Source

and Header
Files

Assembly
Source

Files

Linker

Script
File

User-created files

preprocessor

compiler assembler

Make Utility

Object
Files

Shared
Object

File

Linkable
Image File

Executable
Image File

Link Map
File

Linker and Locator
Library
Files

Archive Utility

Section-Header Table

(optional)

Executable versus Linkable

ELF Header

Section 2 Data

Section 3 Data

…
Section n Data

Segment 1 Data

Segment 2 Data

Segment 3 Data

…
Segment n Data

Linkable File Executable File

Section-Header Table

Program-Header Table
(optional)

Program-Header Table

ELF Header

Section 1 Data

Role of the Linker

ELF Header

Section-Header Table

Section 1 Data
Section 2 Data

…
Section n Data

ELF Header

Section-Header Table

Section 1 Data
Section 2 Data

…
Section n Data

ELF Header

Program-Header Table

Segment 1 Data

Segment 2 Data

…
Segment n Data

Linkable File

Linkable File

Executable File

MALWARE STATIC ANALYSIS

Preparatory steps

 Read the first 3 chapters of the “Malware Data Science”
book by Joshua Saxe & Hillary Sanders

 Download the book’s accompanying VirtualBox virtual
machine from the website:
https://www.malwaredatascience.com/ubuntu-virtual-
machine

 Start the virtual machine

Sections in malware binaries

 Enter the ./malware_data_science/ch1 folder in the VM

 Save the following Python code to file “dissect.py”

 Inspect the PE file sections listed

import pefile
pe= pefile.PE("ircbot.exe")
for section in pe.sections:

print(section.Name, hex(section.VirtualAddress),
hex(section.Misc_VirtualSize), section.SizeOfRawData)

DLLs loaded & functions called

 List the DLLs loaded and functions called from the malware
file

• Add to below code to “dissect.py” to get a hint about what the
malware sample does once it is started

 Investigate the list of DLL and their functions called

for entry in pe.DIRECTORY_ENTRY_IMPORT:
print entry.dll
for function in entry.imports:

print('\t', function.name)

Inspecting the string resources

 Execute the following
command line to
export string resource
to a TXT file:

 Open the output in the
“vim” editor:

 Find lines indicating
that the malware is an
HTTP server

[HTTPD]: Error: server failed,
returned: <%d>.
GET
HTTP/1.0 200 OK
Server: myBot
Cache-Control: no-cache,no-
store,max-age=0
pragma: no-cache
Content-Type: %s
Content-Length: %i
Accept-Ranges: bytes
Date: %s %s GMT
Last-Modified: %s %s GMT
Expires: %s %s GMT
Connection: close
HTTP/1.0 200 OK

strings ircbot.exe > ircbotstrings.txt

vim ircbotstrings.txt

Inspecting the code

 Create & run “disassemble.py” with the below code

import pefile
from capstone import *

#load & find code
pe = pefile.PE("ircbot.exe")
entrypoint = pe.OPTIONAL_HEADER.AddressOfEntryPoint
entrypoint_address = entrypoint + pe.OPTIONAL_HEADER.ImageBase
binary_code = pe.get_memory_mapped_image()[entrypoint:entrypoint+100]

disassemble the code
disassembler = Cs(CS_ARCH_X86, CS_MODE_32)
for instruction in disassembler.disasm(binary_code, entrypoint_address):

print("%s\t$s", instruction.mnemonic, instruction.op_str)

Static analysis challenges

 Packing: Malware authors compress, encrypt or otherwise
modify their malicious program  malware samples
become inscrutable (i.e. not readable) to malware analysts.

• Solution: Dynamic analysis, i.e. run the sample in a sandbox.

 Resource obfuscation: Malware authors obfuscate the
way program resources (e.g. strings & graphical) images
are stored on disk and then de-obfuscate them at runtime.

• Solution: Dynamic analysis or manual de-obfuscation based
on code analysis.

 Anti-disassembly techniques: Hide code or masquerade
instructions

 Dynamically downloaded data: The malware sample
loads its core malicious components from a remote server.

MALWARE DYNAMIC ANALYSIS

Typical malware behavior

 File system: Write a device driver to disk, change system
configuration files, add new programs to the file system and
modify registry keys to ensure the malware auto-starts.

 Windows registry: Allows the malware to disable firewall
or perform other similar unwanted actions.

 Device drivers: Load a driver which logs keyboard events.

 Network actions: Resolve domain names & make HTTP
requests.

Investigate sample on VirusTotal.com

 Upload this malware sample file hash on VirusTotal:
d676d9dfab6a4242258362b8ff579cfe6e5e6db3f0cdd3e006
9ace50f80af1c5

 Inspect the dynamic analysis results with default
Cuckoofork sandbox

 NOTE: Malwr.com is not available in January 2020

VirusTotal.com – Lastline results

VirusTotal.com behavior (Jan 2020)

Lastline sandbox

 File system actions
• Modified file attributes

 Registry actions (set &
delete)

 Process & service actions
• Processes created

• Shell commands

 Synchronization
mechanisms

 Modules loaded, i.e. DLLs

Tencent HABO sandbox

 Behavior tags

 File system actions
• Open, written, deleted,

copied

 Registry actions

 Process & service actions

 Synchronization
Mechanisms & Signals

 Modules Loaded

 Highlighted Actions, e.g.
crypt algos observed

REVERSING CUSTOM PROGRAMS

Preparatory steps

 Access Avatao in a web browser (www.avatao.com)

 Log in

 Search for “Reverse”

 Open path “Reverse Engineering”

 Work through the 1st challenge entitled “Assembly Basics
Tutorial”

 Work through the 2nd challenge entitled “GDB Basics
Tutorial”

ADDITIONAL CHALLENGES

ISSES 2017-2020, Erasmus+ CBHE 32

 The “Lab 4: Reverse engineering Android Applications”
path

 Elements of the “Hacktivity 2015” path

 Elements of the “Bootstrapping IT Security 2016” path

Avatao

33ISSES 2017-2020, Erasmus+ CBHE

Summary

 Portable Executable
(PE)

 Executable and
Linkable Format (ELF)

 Malware analysis

• Static

• Dynamic

 Reversing custom
programs

34

Thank you for your attention!

35

