
ISSES 2017-2020
Novi Sad, Serbia

ISSES – Information Security Services
Education in Serbia

Supported by the Erasmus+ Capacity Building in the
field of Higher Education (CBHE) grant
N° 586474-EPP-1-2017-1-RS-EPPKA2-CBHE-JP

Information Security Services Education in

Serbia (ISSES), Erasmus+ Key Action 2 –

Capacity Building in the field of Higher Education

(CBHE), University of Novi Sad, 2017 – 2020

HACKING CRYPTOGRAPHIC

SYSTEMS

Vision

 Goal: From Zero to Hero
in crypto hacking

 Cryptography intro and
history
• Stream ciphers
• Block ciphers
• Public key crypto

 Black-box hacking
 Breaking the 4-square

cipher

2

Cryptography intro

 DEF: Cryptographic systems consist of a set of algorithmic
tools to solve security problems
• encryption  confidentiality
• message authentication codes (MAC)  integrity and

authenticity
• digital signature  integrity, authenticity, non-repudiation (of

origin)
 Often, cryptography is the only possible or viable solution
 but be careful…

• “If you think cryptography is the answer to your problem, then
you don't know what your problem is…”, Peter G. Neumann

• “… or you don’t understand cryptography.” Bruce Schneier
 The proper application of cryptography is an engineering

problem

Basic model of

cryptographic
systems

Modern ciphers

Modern
cyphers

Asymmetric
key ciphers

Symmetric
key ciphers
Conventional encryption

Stream
ciphers

e.g. RC4, Salsa20

Block
ciphers
e.g. AES, SkipJack

A BIT OF CRYSTORY…

Caesar cypher

 Substitution cipher (replaces letters of the plaintext) used
by Julius Caesar (more than 2000 years ago!)

 Each letter is replaced by the letter at some fixed number of
positions (e.g., 3) down in the alphabet

plain: A B C D E F G H I J K L M N O P Q R S T U V
W X Y Z

cipher: D E F G H I J K L M N O P Q R S T U V W X Y
Z A B C

example: BRUTUS  EUXWXV

Caesar cypher
disc

Monoalphabetic substitution

 Mono-alphabetic substation is a generalization of the Caesar
cipher

 The replacement of letters is determined by a permutation
plain: A B C D E F G H I J K L M N O P Q R S T U V W X

Y Z

cipher: H T K C U O I S J Y A R G M Z N B V F P X D L W
Q E

coding example: BRUTUS  TVXPXF

 The key is the permutation and the key space is very large:
26! � 1.56 ∗ 2

		

• Time left until the next ice age……………............. 2��

��

• Time left until the Sun becomes a supernova ..…….......... 2��

��

• The age of the Earth………………………………............
2

��

��

• The age of the Universe……………………………..........
2

��

��

Breaking

monoalphabetic
substitutions  Every language has its own letter statistics

• Letter frequencies are independent of the
actual text

• There are letters that are more frequent than
others…

• e  12.7%, t  9.1% in the English language
• … and letters that are less frequent:

• z  0.1%, j  0.2% in in the English language

 In case of monoalphabetic substitution, the
ciphertext preserves the letter statistics of
the original plaintext!

• After decoding the most frequent and least
frequent letters, the rest of the text can be
figured out much like solving a crossword
puzzle

Enigma

 The Enigma machine was an
electro-mechanical cipher

 Adopted by the Wehrmacht in
1926

 Used heavily by Germans in WWII

 Let’s try it out  Enigma emulator:
http://people.physik.hu-
berlin.de/~palloks/js/enigma/enigm
a-u_v25_en.html

Enigma in
action

Breaking the Enigma

STREAM CIPHERS

Properties of stream ciphers

 Stream ciphers are usually very efficient
• Fast (especially in hardware)
• Require limited memory space

 The ciphertext always has the same length as the plaintext
 Synchronization is needed between the sender and the

receiver
• Loss of synchrony needs to be detected and addressed

 Stream ciphers do not provide any integrity protection !!!
• An attacker can make changes to selected ciphertext

characters and know exactly what effect these changes have
on the plaintext

• The receiver may not notice these changes (!)

The XOR operator

 XOR (+ or Ꚛ)
• 0+0 = 0; 0+1 = 1; 1+0 = 1; 1+1 = 0

 XOR of bit vectors (words)
• we XOR each corresponding bit pairs, e.g., 0011 + 1010 =

1001

 three main properties:
1. X + 0 = 0 + X = X
2. X + X = 0
3. if A + B = C, then A = B + C (and B = A + C)

 represent the plaintext as a sequence of bytes
 take a password and repeat it many times to get a byte string as long as the plaintext
 obtain the ciphertext by XOR-ing together the plaintext and the password string

Simple XOR cipher

Lorem ipsum dolor sit amet, eu p
rima euismod mediocritatem sea,
sint aliquip est te, et quot sae
pe omittam sit. Id vel malis sum
mo dolores, pro odio dolorum ei.
Eam inimicus tractatos partiend
o te, ex eum equidem delicata pr
incipes. Error conceptam vel ea,
salutatus delicatissimi vituper
atoribus ut eam. Nam ne animal e
xpetenda, vide ubique convenire
qui ut. Ne aeque gloriatur nam,
sed alterum inimicus dissentias
te. Vel te cibo tibique.

TitanTitanTitanTitanTitanTitanTi
tanTitanTitanTitanTitanTitanTita
nTitanTitanTitanTitanTitanTitanT
itanTitanTitanTitanTitanTitanTit
anTitanTitanTitanTitanTitanTitan
TitanTitanTitanTitanTitanTitanTi
tanTitanTitanTitanTitanTitanTita
nTitanTitanTitanTitanTitanTitanT
itanTitanTitanTitanTitanTitanTit
anTitanTitanTitanTitanTitanTitan
TitanTitanTitanTitanTitanTitanTi
tanTitanTitanTitanTitanTitanTita
nTitanTitanTitanTitanTitanTitanT
itanTitanTitanTitanTitanT

Decryption  XOR

the same password

string to the

ciphertext to

recover the

plaintext

XOR

Breaking the simple XOR cipher – Step 1 of 5

Breaking the simple XOR cipher – Step 2 of 5

Let’s determine the length of the key ...

Breaking the simple XOR cipher – Step 3 of 5

Attempt #1: Keep every 3rd letter of the coded message…

Breaking the simple XOR cipher – Step 4 of 5

Attempt #2: Keep every 4th letter of the coded message…

Breaking the simple XOR cipher – Step 5 of 5

Attempt #3: Keep every 5th letter of the coded message…

BLOCK CIPHERS

Block ciphers

 Block ciphers operate on
blocks of bits (typical block
size is n = 128 bits)

 They are stateless (unlike
stream ciphers)

 They cannot be efficiently
distinguished from a
random permutation
• if K is unknown, the output is

unpredictable (even parts of
it, and even when some
input-output pairs are
known)

 Notation:
• E(K, X) or EK(X) for

encryption
• EK

-1(Y) or DK(Y) for
decryption

 Terminology
• X – plaintext block (bit

vector of length n)
• Y – ciphertext block (bit

vector of length n)
• K – key (bit vector of length

k)
• E – encryption/encoding

algorithm
• D – decryption/decoding

algorithm

 Examples: AES, DES
(3DES), RC5, Twofish,
Skipjack, ...

Advanced

Encryption
Standard (AES)

Block encryption modes

Basic modes

 Electronic Codebook
(ECB) mode

 Cipher Block Chaining
(CBC) mode

 Cipher Feedback (CFB)
mode

 Output Feedback (OFB)
mode

 Counter (CTR) mode

Other

 Some special modes
• XCBC
• CBC with Ciphertext

Stealing (CTS)

 Authenticated encryption
modes
• CCM: CTR + CBC MAC
• GCM: Galois CTR mode
• OCB: Offset Codebook

Mode

ECB mode

CTR mode
(encryption)

CTR mode
(decryption)

CBC mode
(encryption)

CBC mode
(decryption)

PUBLIC KEY CRYPTOGRAPHY

Model of asymmetric key encryption

decoding key ą
encoding key
- decoding key is secret

- computing the decoding

key from

the encoding key is hard

- encoding key can be made

public
(public-key crypto)

Public-key encryption schemes

 Functions (algorithms) and terminology:
• Key-pair generation function G() = (K+, K-)

• K+ – public key
• K- private key

• Encryption function E(K+, X) = Y
• X – plaintext
• Y – ciphertext

• decryption function D(K-, Y) = X

 Typically, the plaintext (and the ciphertext) consists of a few
thousands bits  similar to block ciphers

 Examples: RSA, ElGamal

The (textbook) RSA cryptosystem

key-pair generation

algorithm
 choose two large primes p

and q (easy)
 n = pq, f(n) = (p-1)(q-1)

(easy)
 choose e, such that 1 < e <

f(n) and gcd(e, f(n)) = 1
(easy)

 compute the inverse d of e
mod f(n), i.e., ed mod f(n) = 1
(easy if p and q are known)

 output public key: (e, n)
(made public after key-pair
generation)

 output private key: d (and p,
q) (kept secret after key-pair
generation)

Encryption & decryption

 encryption algorithm:
• represent the plaintext

message as an integer m Î
[0, n-1]

• compute the ciphertext c =
me mod n

 decryption algorithm:
• compute the plaintext from

the ciphertext c as m = cd
mod n

• this works, because cd mod
n = med mod n = mkf(n)+1
mod n = m mod n = m

Security of RSA

 factoring integers is believed to
be a hard problem
• given a composit integer n, find

its prime factors
• true complexity is unknown
• it is believed that no polinomial

time algortihm exists to solve it
 computing d from (e, n) is

equivalent to factoring n

 computing m from c and (e,n)
may not be equivalent to
factoring n (this is known as the
RSA problem)
• if the factors p and q of n are

known, then one can easily
compute d, and using d, one can
also compute m from c

• we don’t know if one could factor
n, given that he can efficiently
compute m from c and (e,n)

• nevertheless, the RSA problem is
believed to be a hard problem

 textbook RSA is not
semantically secure (encryption
is deterministic) and malleable
(due to its homomorphic
property)
• in practice, textbook RSA needs

to be extended with message
formatting (PKCS #1)

RSA in practice – homomorphic
property
 if m1 and m2 are two plaintext messages and c1 and c2 are the

corresponding ciphertexts, then the encryption of m1m2mod n is
c1c2 mod n
• (m1m2)eş m1 e m2 e ş c1c2 (mod n)

 this leads to an adaptive chosen-ciphertext attack on RSA
• assume that the attacker wants to decrypt c = me mod n
• assume that an oracle will decrypt arbitrary ciphertext for the

attacker, except c
• the attacker can select a random number r and submit c×remod n

to the oracle for decryption
• since (c×re)d ş cd×red şm×r (mod n), the attacker will obtain

m×r mod n
• He/she then computes m by multiplication with r-1 (mod n)

 we say that textbook RSA is malleable

• can be circumvented by imposing some structural constraints on
plaintext messages  see PKCS #1 formatting

Hybrid encryption

 public key crypto is slower than symmetric key crypto
and require longer (e.g. 2048 bits) keys for similar
security

 the speed problem can be solved with hybrid
encryption:

Semantic security

 an adversary should not be able to choose two plaintexts X and
X’ and later distinguish between the encryptions EK(X) and
EK(X’) of these messages
• note: symmetric-key block ciphers have this property
• the problem with public-key encryption is that the adversary can

compute EK(X) and EK(X’) using the public key K and trivially
determine that EK(X) is the encryption of X and EK(X’) is the
encryption of X’

 the solution is probabilistic encryption
• computation of the ciphertext uses some random input àeven when

the same message is encrypted twice, the outputs will be different
• some public-key encryption schemes are probabilistic by design

(e.g. ElGamal)
• others need pre-formatting of messages which involves the addition

of some randomness (e.g., RSA uses PKCS #1 formatting)

BLACK BOX HACKING

Black box hacking intro

 A little bit of theory: https://en.wikipedia.org/wiki/Black_box
 Access the Avatao platform on www.avatao.com
 Create a new account (if not created earlier)
 Find the “Cryptography” path in Avatao by searching for

“crypto”
 Start the path
 Start the first challenge named “Black box crypto”

Black box hacking – Solution – 1

 Read the (Avatao-)suggested reading on Wikipedia:
https://en.wikipedia.org/wiki/Black_box

 Download netcat from this link:
https://eternallybored.org/misc/netcat/

 Connect to the remote server via raw TCP (IP addresses ar
subject to change):

 Interact with the cryptographic system by manually entering
plaintext messages and inspecting the responses:
• Possible messages: 1, 11, 2, 22, A, AA, B, BB, “This is the

plaintext”, T, Th, Thi, This, etc.

nc 63.32.77.56 32815

Black box hacking – Solution – 2

 Step #1: Notice that there is some padding going on by
sending A, AA, AAA (or similarly formatted other
messages)

 Step #2: Notice the pairwise character flipping by sending
these messages: AAAA, BAAA, AAAB, AACA

 Step #3: Find out the encoding method for each 2-byte
character by writing them down in binary and inspecting in
binary the responses received from the remote server, e.g.
A = 10000001, B = 10000010

 Step #4: Manually decode the first 4-5 characters
 Step #5: Write Python code to programmatically decode

entire messages

Black box hacking – Solution in
Python

cipher =
'4b795162425d5e1e1e757544726f6669797f7c63756f4249461e4f464d4475
4f425e534f5975585f75197d797e1b62696e6f5e751b424d4475595a5f4b754
8755e434b754b424b424d755e4f1b75155e2a57'

Turn the ciphertext into bytes
cipher_bytes = ''
for i in range(len(cipher) // 2):

cipher_bytes += chr(int(cipher[i*2:i*2+2], 16));

Decrypt the ciphertext
plaintext = ''
for i in range(len(cipher_bytes)//2):

plaintext += chr(ord(cipher_bytes[i*2+1])^42)
plaintext += chr(ord(cipher_bytes[i*2])^42)

print(plaintext)

BREAKING THE 4-SQUARE CIPHER

a b c d e E X A M P

f g h i k L B C D F

l m n o p G H I J K

q r s t u N O R S T

v w x y z U V W Y Z

K E Y W O a b c d e

R D A B C f g h i k

F G H I J l m n o p

L M N P S q r s t u

T U V X Z v w x y z

Code ‘cryptography’ with 4-square – The key!

Top-right and
bottom-left key

matrices

4-squre encodes digrams, i.e. two

characters  not as sensitive to

frequency analysis

Top-left and bottom-
right plaintext

matrices

a b c d e E X A M P

f g h i k L B C D F

l m n o p G H I J K

q r s t u N O R S T

v w x y z U V W Y Z

K E Y W O a b c d e

R D A B C f g h i k

F G H I J l m n o p

L M N P S q r s t u

T U V X Z v w x y z

Encode ‘cr’

Step 1: Row of plaintext ‘c’ in the
top-left plaintext square and column
of ‘r’ from the bottom-right plaintext
square

Step 2: Row of plaintext ‘r’ in the
bottom-right plaintext square and
column of ‘c’ from the top-left
plaintext square

‘cr’  ‘XN’

a b c d e E X A M P

f g h i k L B C D F

l m n o p G H I J K

q r s t u N O R S T

v w x y z U V W Y Z

K E Y W O a b c d e

R D A B C f g h i k

F G H I J l m n o p

L M N P S q r s t u

T U V X Z v w x y z

Encode ‘yp’

Step 3: Row of plaintext ‘y’ in the top-
left plaintext square and column of ‘p’
from the bottom-right plaintext square

Step 4: Row of plaintext ‘p’ in the
bottom-right plaintext square and
column of ‘y’ from the top-left
plaintext square

‘yp’  ‘ZI’

4-square task

 The inspector of the military camp gets a letter from the second in
command:
Uqzwhppahp pzywp tg outcdv pawaqqzk zaqzaaa. Luweaav ptn
oivxazzovupwg aaq slv pqzxwq az rtn snpxgwpxspv. Ptn oboyqppwz xp
upan xqzensr saxqzi ee nrxywkyqvy vk sli pwyqtlpgeqrlp. Cl pq yq
weywywp, ttnz rtn negeywywp zqpqrosvlaa qrwgy upxwvl oe vgienv lz
rtn etcwvlaa ywixqyywp ttn „Giwnyzi” vliivvy cslc. Slo yawgeznosq ls
xzq imvcgiizv ptnnepsne slv yvuv vp ievlunqne yq yweonouzywvuo.B

 The inspector knows that the encrypted text was generated with the
four-square cipher. Unfortunately he lost his four-square matrices which
could decrypt it. Help him to solve this problem!

 Hints:
• Wikipedia direct link: https://en.wikipedia.org/wiki/Four-square_cipher
• The plaintext squares contain the standard alphabet (letters are in the

right
order) and both i and j are in the same location (to reduce the alphabet
size
to 25). You may also find this 4square-help.pdf useful.

ADDITIONAL CHALLENGES

ISSES 2017-2020, Erasmus+ CBHE 50

 The “Cryptography” path  first two challenges available
with a free subscription

 The “Mastering Cryptographic Engineering” with 26
challenges

 Elements of the “CrySyS Student Exercises” path
 Elements of the “CrySyS SecChallenge 2014” path – freely

available!
 Elements of the “CrySyS SecChallenge 2015” path – freely

available!
 Elements of the “CrySyS SecChallenge 2019” path

Avatao

51ISSES 2017-2020, Erasmus+ CBHE

Summary

 Cryptography intro and
history
• Stream ciphers
• Block ciphers
• Public key crypto

 Black-box hacking
 Breaking the 4-square

cipher

52

Thank you for your attention!

53

